Wai-Lun Chan, Ph.D.

College of Liberal Arts and Sciences - Physics and Astronomy
Associate Professor
Primary office:
785-864-6413
1079 Malott Hall


Summary

Professional Background

2018-present: Associate Professor, University of Kansas
2013-2018: Assistant Professor, University of Kansas
2009-2012: Postdoctoral Research Associate, Center for Nano and Molecular Science, University of Texas at Austin
2007-2009: Postdoctoral Research Associate, Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign

Education

2007: Ph.D., Materials Science, Brown University
2003: M.S., Materials Science, Brown University
2001: B.S., Materials Science, Chinese University of Hong Kong

Teaching Interests

  • Physics
  • Materials Science

Research

Generating energy in cost-effective ways with minimum environmental impacts is a major challenge in the 21st century. Enabling new energy technologies involves the use of new materials and nano-scaled structures, but the properties of these materials and structures are not well understood. The major goal of my group is to understand the fundamental physics of charge and exciton generation and transport in these new materials, and how these properties may have potential impacts to practical applications

More specifically, our research focuses on understanding the fundamental electronic processes, such as exciton transport and charge transfer, in molecular solids, conjugated polymers, organic-inorganic hybrid systems and 2-D layered crystals. These materials can be potentially used in next generation devices for applications ranging from light harvesting to flexible electronics. However, the lack of fundamental understandings in the electron dynamics of these materials can hinder future applications. Using novel experimental techniques such as time-resolved two photon photoemission spectroscopy and other ultrafast time-resolved techniques, we probe the dynamics of photoexcited electrons and molecules in an ultrafast timescale (10-14 – 10-9 s). A better understanding of these processes will help us to design cost-effective ways to produce energy.

Research Interests

  • Condensed Matter Physics
  • Applied Physics
  • Materials Science
  • Ultrafast spectroscopy
  • Electron dynamics

Selected Publications

  • Kattel, B. Qin, L. Kafle, T. R., & Chan, W. L. (2018). Graphene Field-Effect Transistor as a High-Throughput Platform to Probe Charge Separation at Donor–Acceptor Interfaces. J. Phys. Chem. Lett., 9, 1633-1641. DOI:10.1021/acs.jpclett.8b00335
  • Wang, T. Kafle, T. Kattel, B. & Chan, W. L. (2017). A Multi-Dimensional View of Charge Transfer Excitons at Organic Donor-Acceptor Interfaces. Journal of the American Chemical Society, 139, 4098-4106. DOI:10.1021/jacs.6b13312
  • Kafle, T. R., Kattel, B. Lane, S. D., Wang, T. Zhao, H. & Chan, W. L. (2017). Charge Transfer Exciton and Spin Flipping at Organic-Transition Metal Dichalcogenide Interfaces. ACS Nano, 11(10), 10184-10192. DOI:10.1021/acsnano.7b04751
  • Qin, L. Wu, L. Kattel, B. Li, C. Zhang, Y. Hou, Y. Wu, J. & Chan, W. L. (2017). Using bulk-heterojunction and selective electron trapping to enhance the responsivity of perovskite-graphene photodetector. Advanced Functional Materials, 27(47), 1704173. DOI:10.1002/adfm.201704173
  • Wang, T. Kafle, T. Kattel, B. & Chan, W. L. (2016). Observation of an Ultrafast Exciton Hopping Channel in Organic Semiconducting Crystals. The Journal of Physical Chemistry C, 120, 7491-7499. DOI:10.1021/acs.jpcc.6b01400
  • Wang, T. Liu, Q. Caraiani, C. Zhang, Y. Wu, J. & Chan, W. L. (2015). Effect of Interlayer Coupling on Ultrafast Charge Transfer from Semiconducting Molecules to Mono- and Bilayer Graphene. Physics Review Applied, 4, 014016. DOI:10.1103/physrevapplied.4.014016
  • Wang, T. Caraiani, C. Burg, G. W., & Chan, W. L. (2015). From two-dimensional electron gas to localized charge: Dynamics of polaron formation in organic semiconductors. Physics Review B (Rapid Communication), 91, 041201(R). DOI:10.1103/PhysRevB.91.041201
  • Wang, T. & Chan, W. L. (2014). Dynamical Localization Limiting the Coherent Transport Range of Excitons in Organic Crystal. Journal of Physical Chemistry Letters , 5, 1812. DOI:10.1021/jz500716k
  • Chan, W. Tritsch, J. R., & Zhu, X. (2012). Harvesting singlet fission for solar energy conversion: one versus two electron transfer from the quantum mechanical superposition. J. Am. Chem. Soc., 134(44), 18295-18302. DOI:10.1021/ja306271y
  • Chan, W. L., Ligges, M. & Zhu, X. (2012). The energy barrier in singlet fission can be overcome through coherent coupling and entropic gain. Nature Chemistry, 4(10), 840-845. DOI:10.1038/nchem.1436
  • Chan, W. L., Ligges, M. Jailaubekov, A. Kaake, L. Miaja-Avila, L. & Zhu, X. (2011). Observing the Multi-Exciton State in Singlet Fission and Ensuing Ultrafast Multi-Electron Transfer. Science, 334, 1541. DOI:10.1126/science.1213986
  • Chan, W. L., Averback, R. S., Cahill, D. G., & Ashkenazy, Y. (2009). Solidification velocities in deeply undercooled silver. Phys. Rev. Lett., 102(9), 095701. DOI:10.1103/PhysRevLett.102.095701
  • Chan, W. L., & Chason, E. (2007). Making Waves: Kinetic processes controlling surface evolution during low energy ion sputtering. Journal of Applied Physics, 101(12), 121301. DOI:10.1063/1.2749198

Selected Awards & Honors

  • 2014: National Science Foundation (NSF) CAREER award
  • 2005: Materials Research Society (MRS) Graduate Student Silver Award