• Home
  • Integrating atomic layer deposition and ultra-high vacuum physical vapor deposition for in situ fabrication of tunnel junctions

Integrating atomic layer deposition and ultra-high vacuum physical vapor deposition for in situ fabrication of tunnel junctions

Review of Scientific Instruments 85, 073904 (2014)

Alan J. Elliot*, Gary A. Malek*, Rongtao Lu*, Siyuan Han*, Haifeng Yu, Shiping Zhao and Judy Z. Wu* 
* KU Physics and Astronomy Authors

ABSTRACT

Atomic Layer Deposition (ALD) is a promising technique for growing ultrathin, pristine dielectrics on metal substrates, which is essential to many electronic devices. Tunnel junctions are an excellent example which require a leak-free, ultrathin dielectric tunnel barrier of typical thickness around 1 nm between two metal electrodes. A challenge in the development of ultrathin dielectric tunnel barriers using ALD is controlling the nucleation of dielectrics on metals with minimal formation of native oxides at the metal surface for high-quality interfaces between the tunnel barrier and metal electrodes. This poses a critical need for integrating ALD with ultra-high vacuum (UHV) physical vapor deposition. In order to address these challenges, a viscous-flow ALD chamber was designed and interfaced to an UHV magnetron sputtering chamber via a load lock. A sample transportation system was implemented for in situ sample transfer between the ALD, load lock, and sputtering chambers. Using this integrated ALD-UHV sputtering system, superconductor-insulator-superconductor (SIS) Nb-Al/Al2O2/Nb Josephson tunnel junctions were fabricated with tunnel barriers of thickness varied from sub-nm to ˜1 nm. The suitability of using an Al wetting layer for initiation of the ALD Al2O3 tunnel barrier was investigated with ellipsometry, atomic force microscopy, and electrical transport measurements. With optimized processing conditions, leak-free SIS tunnel junctions were obtained, demonstrating the viability of this integrated ALD-UHV sputtering system for the fabrication of tunnel junctions and devices comprised of metal-dielectric-metal multilayers.

File: 
Authors: 
Alan J. Elliot, Gary A. Malek, Rongtao Lu, Siyuan Han, Haifeng Yu, Shiping Zhao, Judy Z. Wu

Department Communications

Colloquia         Seminars         Public Events         AAL

MARAC2018

NEWSLETTERS

Department            Alumni

VIDEOS

Mr. Bob Show              Colloquia

Alumni Remembrances          Public Lectures

Departmental Calendar

Mr. Bob T-Shirts: Lab Support
Home to 50+ departments, centers, and programs, the School of the Arts, and the School of Public Affairs and Administration
KU offers courses in 40 languages
No. 1 ranking in city management and urban policy —U.S. News and World Report
One of 34 U.S. public institutions in the prestigious Association of American Universities
44 nationally ranked graduate programs.
—U.S. News & World Report
KU Today
It may turn out that the key to beating back an unconquerable foe, antibiotic resistance, is an invented protein in… https://t.co/portQeNxBm


Social Media

Find us on Facebook