• Home
  • Monotop signature from a fermionic top partner

Monotop signature from a fermionic top partner

We investigate monotop signatures arising from phenomenological models of fermionic top partners, which are degenerate in mass and decay into a bosonic dark matter candidate, either spin 0 or spin 1. Such a model provides a monotop signature as a smoking gun, while conventional searches with t¯t+ missing transverse momentum are limited. Two such scenarios, (i) a phenomenological third generation extradimensional model with excited top and electroweak sectors, and (ii) a model where only a top partner and a dark matter particle are added to the standard model, are studied in the degenerate mass regime. We find that in the case of extra dimension a number of different processes give rise to effectively the same monotop final state, and a great gain can be obtained in the sensitivity for this channel. We show that the monotop search can explore top-partner masses up to 630 and 300 GeV for the third generation extradimensional model and the minimal fermionic top-partner model, respectively, at the high luminosity LHC.

Physical Review D 97, 015002 – Published 8 January 2018
File: 
Authors: 
Dorival Gonçalves, Kyoungchul Kong*, Kazuki Sakurai, and Michihisa Takeuchi *KU Authors

Department Communications
Newsletters
Paper of the Week

Baldenegro Barrera, Baringer, Bean, Boren, Bowen, Bylinkin, Isidori, Khalil, King, Krintiras, Kropivnitskaya, Lindsey, Majumder, Mcbrayer, Minafra, Murray, Rogan, Royon, Sanders, Schmitz, Tapia Takaki, Wilson & CMS Collaboration

See previous papers

Mr. Bob T-Shirts: Lab Support