• Home
  • Supernova triggers for end-Devonian extinctions

Supernova triggers for end-Devonian extinctions

The Late Devonian was a protracted period of low speciation resulting in biodiversity decline, culminating in extinction events near the Devonian–Carboniferous boundary. Recent evidence indicates that the final extinction event may have coincided with a dramatic drop in stratospheric ozone, possibly due to a global temperature rise. Here we study an alternative possible cause for the postulated ozone drop: a nearby supernova explosion that could inflict damage by accelerating cosmic rays that can deliver ionizing radiation for up to 100 ky. We therefore propose that the end-Devonian extinctions were triggered by supernova explosions at 20pc, somewhat beyond the “kill distance” that would have precipitated a full mass extinction. Such nearby supernovae are likely due to core collapses of massive stars; these are concentrated in the thin Galactic disk where the Sun resides. Detecting either of the long-lived radioisotopes Sm146 or Pu244 in one or more end-Devonian extinction strata would confirm a supernova origin, point to the core-collapse explosion of a massive star, and probe supernova nucleosynthesis. Other possible tests of the supernova hypothesis are discussed.

Brian D. Fields, Adrian L. Melott, John Ellis, Adrienne F. Ertel, Brian J. Fry, Bruce S. Lieberman, Zhenghai Liu, Jesse A. Miller, and Brian C. Thomas